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1. CFD — (Not) Geophysical Fluid Dynamics

‘Conventional’ CFD differs from GFD in a number of important ways:

Pressure Coupling

Velocity-pressure coupling is ‘isotropic’ — no hydrostatic assumption:

@ Non-hydrostatic pressure distribution computed at each time-step.
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Pressure Coupling
Velocity-pressure coupling is ‘isotropic’ — no hydrostatic assumption:
@ Non-hydrostatic pressure distribution computed at each time-step.

Sub-grid Modelling
Resolve boundary-layer flows through mesh adaptation:

@ Sub-grid parameterisations used less frequently.

o Direct Numerical Simulation (DNS) not impossible.

v

Geometric Constraints

Solve flow problems for arbitrarily complex geometries.

@ Use unstructured meshes and numerical methods. )
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1. CFD - Voronoi-based Finite Volume Schemes

Integrate equations of motion in divergence form over control volumes:

|+ 9 (@) ~Sqav =0

@ A Voronoi diagram is a set of
polygonal cells.

@ Each cell contains varying numbers
of edges.

@ The edges of each cell are always

orthogonal to a common centre. W Cell edge (1)
@ Cell center (V)
A Vertex

@ The Voronoi diagram is constructed
upon an underlying triangulation.
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Variable resolution Voronoi mesh, clustering elements in boundary layer




2. Mesh — Unstructured Triangulations

The creation of ‘optimal’ unstructured triangulations & Voronoi diagrams
is non-trivial:

@ Need to ensure that ‘element-quality’ is adequate:
e Don't want highly skewed cells — aim for equilateral triangles.

e Don’t want cell size to vary too rapidly.

@ Need to optimise both vertex positions and mesh topology.



2. Mesh — Unstructured Triangulations

The creation of ‘optimal’ unstructured triangulations & Voronoi diagrams
is non-trivial:
@ Need to ensure that ‘element-quality’ is adequate:
e Don't want highly skewed cells — aim for equilateral triangles.

e Don't want cell size to vary too rapidly.

@ Need to optimise both vertex positions and mesh topology.

The so-called Delaunay Triangulation offers a convenient framework for
mesh generation. Given a set of vertices X C RY, the Delaunay
triangulation 7 = Del(X) is known to be ‘optimal’ for a range of
geometric criteria.




2. Mesh — Quality Delaunay Triangulations

‘Refinement’ algorithms incrementally add vertices to a coarse mesh until all
constraints are satisfied:

@ A coarse triangulation is built

based on the external geometry of
the domain.
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‘Refinement’ algorithms incrementally add vertices to a coarse mesh until all
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based on the external geometry of
the domain.

o Additional vertices are added to
‘remove’ any poor quality triangles
by splitting them.




2. Mesh — Quality Delaunay Triangulations

‘Refinement’ algorithms incrementally add vertices to a coarse mesh until all
constraints are satisfied:

@ A coarse triangulation is built
based on the external geometry of

the domain.
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‘remove’ any poor quality triangles
by splitting them.
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lations of a turbine blade for a 3d CFD study.
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Unstructured GFD Applications
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3. ALE — Eulerian vs Lagrangian Methods

Equations of motion can be represented in either an Eulerian or Lagrangian
form:

@ Eulerian Form: Mesh is fixed and transport is achieved through
explicit evaluation of cell-wise fluxes.

o Lagrangian Form: Mesh moves with the flow. Flux evaluation is
replaced by mesh movement.



3. ALE — Eulerian vs Lagrangian Methods

Equations of motion can be represented in either an Eulerian or Lagrangian
form:

@ Eulerian Form: Mesh is fixed and transport is achieved through
explicit evaluation of cell-wise fluxes.

o Lagrangian Form: Mesh moves with the flow. Flux evaluation is
replaced by mesh movement.

Lagrangian methods allow the mesh to align locally with features of the
flow:

Quasi-Isopycnal Representation

Lagrangian vertical transport can be used to achieve a quasi-isopycnal
representation in the open-ocean, where the flow is essentially adiabatic.
Minimisation of spurious vertical mixing.




3. ALE - Layered Vertical Structure

The aim is to follow the approach of HYCOM, introducing a ‘flexible’ vertical
discretisation that:
@ Follows isopycnals where possible.

@ Smoothly transitions to other representations where necessary. (z-model in
mixed layer, o-model near sharp topography, etc).

O =W s N o~

ITemperature profiles from Bleck 2004 o = -



3. ALE - Layer-wise Equations of Motion

The equations of motion for the ocean can be written as a set of layer-wise
conservation laws:

d
V- (upu]) = V() + S,
do
dp
dAp
7 + V- (UhAp) = Sp
do, s
% TV (up0,5) =Sqs

Rather than introducing a ‘hybrid’ vertical coordinate (as per HYCOM),
we instead form a finite-volume scheme, integrating over layers of variable
thickness.



3. ALE — Arbitrary Lagrangian Eulerian (ALE) Methods

Issues can arise with purely-Lagrangian methods due to the movement of
the grid:

@ The grid may become overly distorted due to local flow
characteristics.

@ The grid may evolve into a non-optimal configuration.



3. ALE — Arbitrary Lagrangian Eulerian (ALE) Methods

Issues can arise with purely-Lagrangian methods due to the movement of
the grid:

@ The grid may become overly distorted due to local flow
characteristics.

@ The grid may evolve into a non-optimal configuration.

These issues can be mitigated through use of an Arbitrary Lagrangian
Eulerian (ALE) approach:

Quasi-Eulerian Re-mapping

If the grid is ‘far-enough’ away from optimal, re-map all flow variables
onto a new target grid via interpolation.




3. ALE - Simple Sketch of an ALE Algorithm
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3. ALE - Simple Sketch of an ALE Algorithm

Ot = d), — /pt a0, St pt) dp
P
Apultt = ul +5t(~V,0' — V- (Apupuf)t + ApS,)
Aptt = Apt — 5tV - (Apul™t)

(Ap0, ApS) ™t = (Aph, Ap S)' — 6tV - (Apultit (67, S))

At t + Jt the grid has drifted (due to vertical transport):

If the grid is not where we want it, we can re-map all flow variables onto
a new grid via a (conservative) interpolation scheme.




3. ALE - Column-wise Sketch of an ALE Algorithm

o Update flow variables and cell thickness via Lagrangian motion.

@ Reconstruct cell-wise polynomials on current mesh.

o Integrate polynomials over new mesh to get new cell means.

Dynamics Reconstruction Average
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3. ALE - Evaluating the Pressure Gradient Force

Considering that the Ap layers are sloping and non-uniform in thickness,
evaluation of the pressure gradient term V,(®) is non-trivial.
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3. ALE - Evaluating the Pressure Gradient Force

Considering that the Ap layers are sloping and non-uniform in thickness,
evaluation of the pressure gradient term V,(®) is non-trivial.

A well-known approach approximates the pressure gradient on a sloping
layer ‘s’ directly, as a finite-difference of the Montgomery potential M:

M = aV(p) + Vs

Due to non-linearities in the equation of state a(6, S, p), such an approach
is not typically stable. In regions of sharp topography and stratification:
@ A small fraction of the vertical force balance can ‘contaminate’ the

horizontal.

@ Such occurances can cause spurious ‘spontaneous motion’ from an
equilibriated state.
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Following an approach of Adcroft et al. [1], the pressure gradient can instead
be evaluated indirectly, via a finite-volume integral:
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3. ALE - Evaluating the Pressure Gradient Force

Following an approach of Adcroft et al. [1], the pressure gradient can instead
be evaluated indirectly, via a finite-volume integral:

/QV,,(¢)dpdx:]gQ¢dC J

This formulation accounts for the fully non-linear distribution of ® around
each element:
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3. ALE - Evaluating the Pressure Gradient Force

Assess spurious motion with variable topography, linear stratification.

Pressure Gradient Tests
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3. ALE - Evaluating the Pressure Gradient Force

Assess spurious motion with variable topography, linear stratification.

Pressure Gradient Tests
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3. ALE - Evaluating the Pressure Gradient Force

Assess spurious motion with variable topography, linear stratification.

Pressure Gradient Tests
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3. ALE - Evaluating the Pressure Gradient Force

Given a sufficiently high-order quadrature, the finite-volume pressure
gradient formulation achieves = 0.0 error.

Such a scheme allows flexible vertical discretisation, but will maintain
equilibrium in the presence of sharp topography ad stratification.




3. ALE - Initial Results: Dense Overflow

Channel: 200km wide, 2000m deep, A10° temperature stratification.
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3. ALE - Initial Results: Dense Overflow

Channel: 200km wide, 2000m deep, A10° temperature stratification.




@ Developed a simple ‘proof-of-concept’ layered ocean model using
ALE methodologies.

@ Developed a stable pressure gradient formulation that minimises
pressure gradient errors with arbitrary layer geometries/stratification.

@ Looking to improve 2D model:
o Variable number of layers per column.
o General boundary conditions.

o Sub-grid parameterisations.

@ Incorporate ALE technology into the next iteration of the GISS ocean
model.
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